
1. Use Simpson’s rule with n = 4 to estimate

tan−1(2) =

∫ 2

0

1

1 + x2
dx.

Solution: Since we are using 4 steps, ∆x = 2−0
4

= 1
2
. Our function is f(x) = 1

1+x2 .
Thus we have

1

2 · 3

[
f(0) + 4f

(
1

2

)
+ 2f(1) + 4f

(
3

2

)
+ f(2)

]
=

1

6

[
1 + 4 · 4

5
+ 2 · 1

2
+ 4

4

13
+

1

5

]
=

1

6

[
1 +

16

5
+ 1 +

16

13
+

1

5

]
.

2. Evaluate the improper integral ∫ 5

3

1√
x− 3

dx.

Solution: Recall that the given integral is improper because

lim
t→3+

1√
x− 3

=∞.

Therefore, ∫ 5

3

1√
x− 3

dx = lim
t→3+

∫ 5

t

1√
x− 3

dx.

∫ 5

t

1√
x− 3

dx =

∫ 5

t

(x− 3)−
1
2 dx

=
(x− 3)

1
2

1
2

∣∣∣∣5
t

= 2
√
x− 3

∣∣∣∣5
t

= 2
√

2− 2
√
t− 3

Now, limt→3+

∫ 5

t
1√
x−3

dx = limt→3+(2
√

2− 2
√
t− 3) = 2

√
2.



3. Which of the following integrals corresponds to the length of the shorter arc of the ellipse

x2

4
+ y2 = 9

(shown in the picture at right) from the point (4
√

2,−1) to the point (4
√

2, 1).

Solution:

H4 2 ,-1L

H4 2 ,1L

-6 -4 -2 2 4 6

-4

-2

2

4

This part of the curve can be written in the form x = g(y). We have

x2

4
+ y2 = 9→ x2

4
= 9− y2 → x2 = 4(9− y2)→ x = ±2

√
9− y2.

Since the x-values are all positive on this part of the graph, we have that this part
of the graph is on the curve x = 2

√
9− y2. We get

dx

dy
=

−2y√
9− y2

→ (
dx

dy
)2 =

4y2

9− y2

We have that the arc length of curve for −1 ≤ y ≤ 1

=

∫ 1

−1

√
1 +

(dx
dy

)2

dy =

∫ 1

−1

√
1 +

4y2

9− y2
dy =

∫ 1

−1

√
9 + 3y2

9− y2
dy

Alternatively

Noticing the options we are given we realize that we use

∫ b

a

√
1 +

(
dx

dy

)2

dy
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for the arc length. We see from the graph that a = −1 and b = 1. To calculate dx
dy

we use implicit differentiation.

d

dx
(
x2

4
+ y2) =

d

dx
(9)

⇒ x

2
+ 2y

dy

dx
= 0

⇒ 2y
dy

dx
=
x

2

⇒ dy

dx
=

x

4y

⇒ dx

dy
=

4y

x
.

Note from the given equation that x2+4y2

4
= 9 ⇒ x2 = 36 − 4y2. Therefore the arc

length is given by ∫ 1

−1

√
1 +

16y2

x2
dy =

∫ 1

−1

√
1 +

16y2

36− 4y2
dy

=

∫ 1

−1

√
1 +

16y2

4(9− y2)
dy

=

∫ 1

−1

√
1 +

4y2

9− y2
dy

=

∫ 1

−1

√
9− y2 + 4y2

9− y2
dy

=

∫ 1

−1

√
9 + 3y2

9− y2
dy

4. Evaluate the improper integral ∫ ∞
1

x

ex2/2
dx.

Solution: Recall that ∫ ∞
1

x

ex2/2
dx = lim

t→∞

∫ t

1

x

ex2/2
dx.
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To calculate
∫

x

ex2/2
dx we use u-substitution. Let u = x2

2
then du = x dx. This

implies that ∫
x

ex2/2
dx =

∫
1

eu
du

=

∫
e−u du

= −e−u

= − 1

ex2/2

Now,
∫ t

1
x

ex2/2
dx = − 1

ex2/2

∣∣∣∣t
1

= − 1

et2/2
+ 1

e1/2 . Note that limt→∞
1

et2/2
= 0. This gives us

∫ ∞
1

x

ex2/2
dx =

1√
e
.

5. Use Euler’s method with step size 0.2 to estimate y(0.4) where y(x) is the solution to
the initial value problem

y′ = 10(x+ y)2, y(0) = 0.

Solution: Here F (x, y) = 10(x + y)2, h = 0.2 and the initial point is (0, 0). There-
fore,

y1 = y0 + hF (x0, y0) = 0 + 0.2 · F (0, 0) = 0.

Now,

y2 = y1 + hF (x1, y1) = 0 + 0.2 · F (0.2, 0) = 0.2 · 10(0.2)2 = 0.2 · 0.4 = 0.08.

6. Find the solution of the differential equation:

dy

dx
=
x+ 1

ey
,

with initial condition y(0) = 2.

Solution:
First we separate the variables:

eydy = (x+ 1)dx.
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Integrating both sides yields
ey = x2/2 + x+ C.

To solve for y we take the log of both sides:

y = ln(x2/2 + x+ C).

Finally, we use the initial condition y(0) = 2 to solve for C.

2 = ln(C) =⇒ C = e2.

Thus
y = ln(x2/2 + x+ e2).

Note that ln(x2/2 + x+ e2) = ln|x2/2 + x+ e2| since x2/2 + x+ e2 > 0.

7. Find the general solution of the differential equation:

y′ −
(1

x

)
y = 1 + x2.

Solution: This is a first order linear differential equation which is already in standard
form. We find the integrating factor:

I(x) = e
R

(−1/x)dx = e− ln |x| = (|x|)−1 =
1

|x|
.

Multiplying the equation above by I(x) = 1
|x| is the same as multiplying by 1

x
. we get

y′/x− y/x2 = 1+x2

x
giving us that

d

dx

(y
x

)
=

1

x
+ x.

This gives that
y

x
=

∫
(1 + x2)dx = ln |x|+ x2

2
+ C.

Multiplying across by x, we get

y = x(ln |x|+ x2

2
+ C).

8. Determine if the sequence given by an = tan−1(n)
n

converges or diverges, and if it converges
find

lim
n→∞

tan−1(n)

n
.

Page 5



Solution:
As n→∞, tan−1(n)→ π/2. Hence the numerator of the sequence approaches π/2 while
the denominator approaches +∞. This means that an → 0 as n→∞.

9. Consider the following sequences:

(I)
{

(−1)nn
2 − 1

2n

}∞
n=1

(II)
{

(−1)nn
2 − 1

2n2

}∞
n=1

(III)
{

(−1)nn ln(n)
}∞

n=1
.

Which converge, and which diverge?

Solution:
(I): By applying L’Hospital’s Rule to the function f(x) = x2−1

2x we can see that lim
x→∞

f(x) =

0. Thus lim
n→∞

n2−1
2n = 0. But for n ≥ 1,

n2 − 1

2n
=

∣∣∣∣(−1)nn
2 − 1

2n

∣∣∣∣ ,
so the sequence (I) also converges to 0.

(II): lim
n→∞

n2−1
2n2 = 1/2, so as n grows large, the expression (−1)n n2−1

2n2 oscillates

between values close to +1/2 (when n is even) and values close to −1/2 (when n is
odd). Thus the sequence (II) diverges.

(III): As n → ∞, n ln(n) grows arbitrarily large. The factor of (−1)n in sequence
(III) makes the values oscillate between positive values of large magnitude and negative
values of large magnitude. Thus the sequence (III) diverges.

10. Find the sum of the following series:

∞∑
n=1

(−1)n2n+1

3n

Solution: This is a geometric series of the form

∞∑
n=1

arn−1 = a+ ar + ar2 + · · · =

{
converges to a

1−r
if |r| < 1

diverges if |r| ≥ 1.
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(technically we should check if an+1/an is a constant r in order to check this.) We can
identify a by calculating the first term with a1. When n = 1, we get

a = a1 =
(−1)121+1

31
= −22

3
.

When n = 2, we get

ar = a2 =
(−1)222+1

32
=

23

32
.

Now we have

r =
a2

a1

=
(23

32

)
/
(
− 22

3

)
= −

(23

32

)( 3

22

)
= −2

3
.

This means a = −4
3

and r = −2
3
. Then |r| < 1 so the series converges to

a

1− r
=
−4

3

1− −2
3

= −4

5

11. Find the family of orthogonal trajectories to the family of curves given by

y = k( 3
√
x)

Solution:
First we compute y′

y′ = k
1

3
x−2/3 .

We now solve for k in y = k( 3
√
x). Doing so we get k = y

3√x
. So

y′ =
y
3
√
x

1

3
x−2/3 =

y

3x
.

If y 6= 0 we take the negative inverse, we get that the family of orthogonal trajectories
satisfies

y′ = −3x

y
.

We then separate to get
y y′ = −3x

Integrating we get ∫
y dy = −

∫
3x dx .

So
1

2
y2 = −3

2
x2 + C .

Page 7



Rearranging we finde
y2 + 3x2 = C̃ .

If there is an x such that y(x) = 0 then y is identically 0 we have the family

y2 + 3x2 = C̃ and y = 0

12. Find the arc length of the curve y = f(x) from the point (0, 1/3) to the point (1, e3+e−3

6
)

where

f(x) =
e3x + e−3x

6
.

Solution:
This curve is a function of x so we can use

L = arc length =

∫ 1

0

√
1 +

(
dy

dx

)2

dx

Now dy
dx

= f ′(x) = e3x−e−3x

2
, so

arc length =

∫ 1

0

√
1 +

(
e3x − e−3x

2

)2

dx

=

∫ 1

0

√
1 +

(e6x − 2 + e−6x

4

)
dx

=

∫ 1

0

√
e6x + 2 + e−6x

4
dx

=

∫ 1

0

√(
e3x + e−3x

2

)2

dx

=

∫ 1

0

e3x + e−3x

2
dx

=
e3x + e−3x

6

∣∣∣∣∣
1

0

dx

=
e3 − e−3

6

13. (a) Which of the pictures below show the direction field for the differential equation
dy
dx

= (4− y)(4 + y).
(b) On the direction field you have selected above , sketch the graph of the solution with
initial condition y(0) = 3

2
.
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(c) For the solution you have sketched in part (b), use the direction field to determine
lim

x→∞
y(x)?

Solution: (a) When y > 4, dy
dx

= (4− y)(4 + y) < 0 so the slopes should be negative for

all points above y = 4. Similarly when y < −4, dy
dx

= (4 − y)(4 + y) < 0 so all points

below y = −4 should also be negative. When −4 < y < 4, dy
dx

= (4− y)(4 + y) > 0 so all
points in between should have positive slope. This is answer (IV).

(b) The point (0, 3
2
) is in the middle portion y should slowly curve up to y = 4.
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(c) This means that for this initial condition

lim
x→∞

y(x) = 4
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